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The flow of water in straight open channels with prismatic complex cross-sections is 
considered. Lateral distributions of depth-mean velocity and boundary shear stress 
are derived theoretically for channels of any shape, provided that the boundary 
geometry can be discretized into linear elements. The analytical model includes the 
effects of bed-generated turbulence, lateral shear turbulence and secondary flows. 
Experimental data from the Science and Engineering Research Council (SERC) 
Flood Channel Facility are used to illustrate the relative importance of these three 
effects on internal shear stresses. New experimental evidence concerning the spatial 
distribution of Reynolds stresses rYZ and T,, is presented for the particular case of 
compound or two-stage channels. In such channels the vertical distributions of T,, 

are shown to be highly nonlinear in the regions of strongest lateral shear and the 
depth-averaged values of rYX are shown to be significantly different from the depth 
mean apparent shear stresses. The importance of secondary flows in the lateral shear 
layer region is therefore established. The influence of both Reynolds stresses and 
secondary flows on eddy viscosity valucs is quantified. A numerical study is 
undertaken of the lateral distributions of local friction factor and dimensionless eddy 
viscosity. The results of this study are then used in the analytical model to reproduce 
lateral distributions of depth-mean velocity and boundary shear stress in a two stage 
channel. The work will be of interest to engineers engaged in flood channel hydraulics 
and overbank flow in particular. 

1. Introduction 
Most natural rivers have flood plains that extend laterally away from the main 

river channel at a gentle gradient or in a series of terraces. In certain cases multistage 
channels are deliberately formed in order to increase conveyance capacity in times 
of flood and to have recreational land available at  other times of the year. Two-stage 
channels thus consist typically of a main river channel in which there is some 
discharge all of the time and flood plains, which are dry for most of the time yet 
perform a vital function in times of flood. Since flood alleviation schemes are the 
focus of much engineering work, the prediction of the conveyance capacity, velocity 
distribution and boundary shear stress distribution in such channels is clearly 
important. The boundary shear stress distribution is a prerequisite for studies on 
bank protection and sediment transport. The prediction of these parameters in two- 
stage or compound channels is complicated by the lateral exchange of momentum 
that takes place in the shear layer that forms between the generally faster moving 
water in the main river channel and the slower moving water on the flood plain. 



618 K .  Shiono and D .  W .  Knight 

FIGURE 1. Hydraulic parameters associated with overbank flow in a two-stage channel 

The superposition of high lateral shear on bed-generated turbulence and 
longitudinal secondary flow structures is an intriguing problem in fluid mechanics. In 
the context of river channels with flood plains, the problem is usually further 
complicated even for moderately straight channels by the complex geometry of the 
cross-section and the heterogeneous nature of the boundary roughness. The modelling 
of such flows is therefore particularly difficult and challenging. Some of the main 
hydraulic features of overbank flow are shown in figure 1 for a symmetric two-stage 
channel with a trapezoidal cross-section. A number of one-dimensional empirical 
formulae, based on apparent shear stresses acting on particular internal interfaces, 
have been used to predict the stage discharge relationship ( H  vus. &) for two-stage 
channels; see for example, Knight & Demetriou (1983), Knight & Hamed (1984), 
Knight, Demetriou & Hamed (1984), Wormleaton, Allen & Hadjipanos (1982) and 
Wormleaton & Merrett (1990). Two-dimensional approaches based on depth- 
averaged parameters have been developed to give the lateral distributions of both 
velocity and boundary shear stress. These approaches have typically been either 
numerical, as for example given by Keller & Rodi (1988) and Wormleaton (1988), or 
analytical, as given by Shiono & Knight (1988). Three-dimensional turbulence 
models have also been developed and applied to this problem in order to understand 
the pattern of secondary flow cells and the structure of the shear layer region ; see for 
example Kawahara & Tamai (1988), Krishnappan & Lau (1986) and Larson (1988). 
However, these three-dimensional models require a large number of empirical 
constants that make them not very useful for engineering design purposes. The two- 
dimensional approach therefore seems the best way forward at the moment and 
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examples of this approach are given by Knight, Shiono & Pirt (1989), Shiono & 
Knight (1988) and Wormleaton (1988). However, in these three particular examples 
the secondary flow effects have been ignored, and only lateral shear and bed- 
generated shear considered. 

This paper describes an improved analytical solution, developed from the earlier 
work of Shiono & Knight (1988), which now includes the effects of secondary flow. 
Data from the Science and Engineering Research Council Flood Channel Facility 
(SERC-FCF) are used to quantify the apparent shear stresses across a two-stage 
channel arising from turbulence and secondary flow effects. These apparent shear 
stresses are then depth averaged to give dimensionless depth-averaged eddy 
viscosity values. The analytical solution is thus capable of reproducing the lateral 
distributions of depth-mean velocity and boundary shear stress in compound or two- 
stage channels. It has been applied to several natural river channels in the 
Severn-Trent catchment in order to extend the stage discharge relationship for 
overbank flow; see Knight et al. (1989) and Knight, Samuels & Shiono (1990). A 
typical symmetric two-stage channel in which there is no crossfall in regions 1 and 
3 is shown in figure 2. For a sufficiently wide river channel (region 1) and flood plain 
(region 3), the depth-averaged velocity, U,, and boundary shear stress, 7b, will attain 
constant but different values in the two regions, thus creating a shear layer in the 
vicinity of region 2. Owing to the re-entrant and channel corners in this region the 
flow is also strongly affected by secondary flows. 

2. Analytical solution 
In order to predict the lateral variation of depth-mean velocity and boundary 

shear stress in open channel flow, the depth-mean momentum equation has to be 
solved for steady uniform turbulent flow in the streamwise direction. The equation 
for the longitudinal streamwise component of momentum on a fluid element may be 
combined with the continuity equation to give 

_ _ -  
where x, y ,  z are streamwise, lateral and normal directions respectively, U ,  V ,  Ware 
temporal mean velocity components corresponding to z, y, z, u, v, w are turbulent 
perturbations of velocity with respect to the mean, p is the density of water, g is the 
gravitational acceleration, So is the bed slope gradient (So = sin 0). 

The depth-mean-averaged momentum equation can be obtained by integrating (1) 
over the water depth, H .  Provided V ( H )  = m(0) = 0, then Shiono k Knight (1988) 
show that (1) becomes 

where 7b is the bed shear stress, s is the side slope (1 :s, vertical: horizontal), 

Analytical solutions have been obtained to (2) based on the eddy viscosity approach 
and by neglecting the secondary flow contribution i.e. ( a ( H p u V ) , / a y  = 0). The eddy 
viscosity approach has been adopted because of its common usage by numerical 
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Data for SERC-FCF: 
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FIGURE 2. Cross-section of a two-stage channel, with notation. 

modellers. In  this model the depth-averaged transverse shear stress, Fyx, is expressed 
in terms of the lateral gradient of depth-mean velocity 

Since the eddy viscosity has dimensions of m2 s-', i t  is often related to the local shear 
velocity, U ,  and depth, H ,  by the dimensionless eddy viscosity coefficient, A, defined 

cyx = hU,H. (4) 
by 

However as (2) shows, the local shear velocity, U ,  ( =  (7b/p);) is affected by the free 
shear layer turbulence and the secondary flows. In  regions of high lateral shear it 
might be argued that the U, in (4) should be replaced by the primary or shear 
velocity difference between the two regions. However, in the interests of simplicity 
and because of its common usage by hydraulic modellers the form of (4) is retained 
with h being regarded as a 'catch all' parameter to describe various three- 
dimensional effects. In  order to  express ( 2 )  in terms of one variable only (Vd or 7,,), 
the Darcy-Weisbach friction, f (=  87,,/(pcFd)) is used to link U, and U,, giving 

u, = (g$u,. (5) 

The depth-averaged eddy viscosity in (4) may then bc expressed in the form 

Eyx = AH($$&. 

Substituting (3) and (6) into (2) gives 

In  an earlier paper, Shiono & Knight (1988) assumed that a(HpOV),/ay = 0 and 
obtained analytical solutions to (7 )  for channels of various shape. The experimental 
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results which are described in a later section of this paper suggest that, for the 
particular cases considered, the shear stress due to secondary flow, decreases 
approximately linearly either side of a maximum value which occurs at  the edge of 
the flood plain and the main channel. Although this is a first-order approximation to 
the data, as figure 10 will later show, it does have the merit that it then allows (7 )  
to be solved analytically. Further data from a wider range of channel geometries are 
clearly needed before this assumption may be generally accepted. However, if this is 
so, then the lateral gradient of the secondary flow force per unit length of the channel 
may be written as 

where the subscripts mc and fp refer to the main channel and flood plain respectively. 
The analytical solution to (7) may then be expressed for a constant-depth, H ,  domain 
as 

and for a linear-side-slope domain as 

where 

and E is the depth function on the side-slope domain (e.g. t; = H - ( ( y  - b)/s) for the 
main-channel side slope). 

Equations (9)-( 11)  give the lateral variation of depth-mean velocity and boundary 
shear stress (via ( 5 ) )  in a channel of any shape provided that its geometry can be 
described by a number of linear boundary elements. For a constant-depth domain, 
(9) shows that as y+co with y > 0, since the flow must become two-dimensional 
(U, = {8gSoH/ f} i )  in the far field where no secondary flow exists (p = 0) ,  therefore 
A ,  = 0. For a sloping-side-slope domain, (10) shows that as s+m, A ,  must be zero 
in order that a solution might exist. Equations (9) and(l0) also require boundary 
conditions of continuity of HU, and a(HU,)/ay across joints of domains, together with 
the no-slip condition, ud = 0, at the remote boundaries. The subdivision of the 
channel cross-section into various sub-areas with either constant-depth domains or 
sloping-side-slope domains will therefore require sufficient computer capacity for the 
matrix inversion of the coefficients A , .  . .A,.  Examples of complex natural geometries 
modelled in this way are given in Knight et al. (1989, 1990). 
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FIQURE 3. General view of a straight two-stage channel moulded in the Science and Engineering 
Research Council Flood Channel Facility (SERC-FCF) at  Hydraulics Research Ltd, Wallingford. 
(Courtesy of Hydraulics Research Ltd.) 

3. Analysis of experimental data 
3.1. Data acquisition 

The SERC Flood Channel Facility (SERC-FCF) consists of a channel 56 m long, 10 m 
wide with a discharge capacity of 1.1 m3 s-l; see figures 3 and 4. Within the 10 m wide 
flume a variety of channels can be constructed with different planform geometries 
(straight, skewed and meandering), different cross-sectional shapes (trapezoidal, 
idealized natural sections, variable flood plain widths, variable crossfall) and different 
boundary types (smooth, rough, rigid and loose). The SERC has embarked on an 8 
year programme of directed research, the first phase of which, concerning straight 
and skewed channels, is now coming to a close. During this 3 year period 19 series of 
experiments have been undertaken, each series corresponding to  a particular 
geometry. This paper concentrates mainly on the data from Series 02, in which a 
straight two-stage channel was moulded in the facility shown in figures 3 and 4. The 
geometrical parameters were Blb = 4.2, b/h = 5.0, s1 = s3 =a, s2 = s4 = 1.0, b = 
0.75m, h=0.15m,  S , = 1 . 0 2 7 ~ 1 0 - ~  and 0 .15<H<0.30m,  giving O<D,<O.5 .  
Both in-bank and out-of-bank experiments were undertaken. The measurement 
section was 36 m downstream from the inlet to  the flume. 

The data acquisition system is only described briefly here since full details are 
given by Elliott & Sellin (1990), Knight & Sellin (1987), Knight & Shiono (1990), 
Myers & Brennan (1990) and Wormleaton & Merrett (1990). The velocity data were 
obtained by using multiple 10 mm diameter miniature propeller meters and 60 s time 
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averaging. The boundary shear stresses were measured with 2.7 and 4.0 mm diameter 
Preston tubes with 50 s time averaging. The turbulence measurements were 
undertaken with a two-component LDA system (TSI, model 9273), operated in a 
backscatter mode with a 20m long fibre-optic cable connecting the laser and 
processing system to a 15 mm diameter submersible measurement probe ; see 
figure 5 .  

3.2. Mean $ow parameters 
The main hydraulic features associated with overbank flow are shown in figure 1.  In  
a long reach of a wide river channel the boundary layer will extend over the whole 
flow depth to give a logarithmic distribution of primary velocity. Where there is a 
lateral change in depth, as is the cage for a two-stage channel, then the depth-mean 

FIGURE 5. Components of the TSI laser anemometry system showing submersible probe head, 
fibre optic cable, transmitting and receiving optics and processing equipment. 
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velocities will vary laterally creating a transverse shear layer which is superimposed 
on the bed-generated turbulence. The turbulence generated by the irregular 
boundaries and the free shear layer are thus responsible for the various secondary 
flow patterns shown in figure 1. Equation (1) indicates how the gradients of the 
Reynolds stress components contribute to the secondary flow field. In addition to the 
longitudinal vortices, a bank of vertical vortices will form in the shear layer along the 
interface between the main river channel and the flood plain. The flow structures 
that occur in rivers are therefore extremely complex arising from three distinct 
physical processes, namely (i) boundary-generated turbulence, (ii) free shear layer 
turbulence and (iii) velocity fluctuations associated with perturbations in the 
longitudinal secondary flow cells. Each of these generation mechanisms has its own 
length and time scales which need to be identified prior to measurement. A frequency 
analysis of these fluctuations and a detailed discussion of the turbulence data are 
given by Shiono & Knight (1989) and Knight & Shiono (1990). The resulting 
boundary shear stress distribution in a two-stage channel is therefore particularly 
complex, as figure 1 indicates. 

3.3. Re ynolds-stress analysis 
The raw data were sampled between 20 and 100 Hz over a period of approximately 
60 s at each measurement position within the cross-section. Further details are given 
by Knight & Shiono (1990). Isometric plots of the Reynolds stresses ryX and T,, are 
shown in figure 6 for four relative depths, D,, between 0.1 and 0.25 taken from Series 
02. The relative depth D, is the ratio between the depth of flow on the flood plain to 
that in the main channel, i.e. D, = (H-h ) /H .  It should be noted that the scales on 
each diagram vary with the particular value of D,. 

It is clear that  for a given value of z ,  the ryX values reach a maximum at  around 
y = 0.9 m, i.e. a t  the beginning of the flood plain. Within the lateral shear zone, 
0.5 < y < 1.5 m, the highest values of rys are generally near the free surface. At the 
lowest value of relative depth on which turbulence measurements were possible, i.e. 
D, = 0.1, the variation of TYx over the depth is most marked. The depth-mean values, 
Q,,, required in (2) and (3) were therefore obtained by numerical integration of the 
data for each value of y .  Figure 6 also shows that corresponding T,, values are 
negative in those places where ryX values are large. This arises from the force balance 
in (1). A detailed discussion of the Reynolds stress data is given by Shiono & Knight 
(1989) and Knight et al. (1990), and will not be pursued here, since the main purpose 
of including one data set here is to illustrate how the depth-mean values Fys, were 
obtained . 

3.4 Boundary-shear-stress analysis 
The turbulence characteristics of two-dimensional flow in an open channel have been 
well established by Nezu & Rodi (1986). However, in those cases where the flow is 
three-dimensional, as is the case with compound channels, then the turbulent 
structure and boundary shear stress distribution are more complex. See for example 
Knight & Hamed (1984), Lai & Knight (1988) and Myers & Elsawy (1975). Equation 
(2) indicates why this is so, and how rb differs from the standard two-dimensional 
value (pgHS,)  owing to transverse gradients in the additional shear stresses arising 
from secondary flow and lateral shear effects. Rearranging (2) gives 

Figure 7 shows some experimental data from the SERC-FCF for three different 
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FIGURE 6. Isometric plots of the Reynolds stresses T,, and T~~ for four relative depths, 
D, (=  ( H - h ) / H ) ,  in Series 02 with B / b  = 4.2, b / h  = 5.0 and s = 1.0. 

floodplain widths (B/b  = 6.67,4.2 and 2.2, i.e. Series 0143 respectively), a range of 
relative depths, D, = 0.1-0.5 and a main channel side slope s of 1.0. The data have 
been non-dimensionalized by pgHS,. The figure shows that the right-hand side of (12) 
is non-zero except a t  two places where { H ( ( ~ U V ) , - T ~ ~ ) }  has a local maximum. The 
gradient of { H (  (pop) ,  - T,J} is clearly positive in the main channel and negative on the 
flood plain for all B / b  values tested. Although the gradient values of { H ( ( p ~ ~ ) d - T v x ) }  
are largely independent of relative depth, D,, outside the shear layer, the width of the 
shear layer on the flood plain is strongly dependent upon D,, increasing as D, 
decreases. The same characteristic feature may be noted in the secondary flow 
results. 
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It should be noted that in figure 7 only half the data are shown on account of the 
symmetry. In  general for symmetric cross-sections individual Preston tube and 
velocity readings were taken on the right-hand side of the system in great detail, and 
on the left-hand side only at  selected points in order to check for flow symmetry. 
Experience from many other investigations and the SERC-FCF suggested that the 
flow symmetry was very good. As an overall check, the individual boundary shear 
stress and velocity readings were integrated laterally (the velocity data having been 
integrated vertically first), and then compared with the section-mean values 
obtained independently by water surface slope or orifice measurements. The mean 
errors for the 23 experiments presented in this paper were - 3.1 % for T~ and 0.5% 
for U. It is interesting to note that despite the strong lateral variations in boundary 
shear stress the Preston tube calibration of Pate1 (1965) was found to be remarkably 
insensitive to  the degree of transverse shear imposed in these experiments. This was 
independently confirmed by the fact that the vertical distributions of Reynolds 
stress 7,, could be smoothly extrapolated to  give bed-shear-stress readings very close 
to the Preston-tube readings. See Knight & Shiono (1990) and Knight et al. (1990) for 
illustrative plots of this detail. On the basis of these measurements the assumption 
of symmetry of flow was therefore accepted and V was taken as zero at  the centreline. 
This was subsequently also checked by LDA measurements. 

The depth-mean apparent shear stress acting on a vertical interface, t,, may be 
calculated by integrating (12) to  give 

It should be noted that (12) and (13) indicate that this particular apparent shear 
stress has two quite distinct components, one arising from secondary flows and the 
other from turbulence. Normally these are lumped together into a single value of t ,  
as done by Knight & Demetriou (1983), Myers (1978) and Wormleaton (1988). Values 
of .?, based on (13) and the data in figure 7, are shown in figure 8. 

It is now possible to quantify the two components in ta, based on the turbulence 
data in figure 6. For each value of relative depth, the individual values of ryx were 
depth averaged to  give the depth-mean values, Pyx, which are shown in figure 9. This 
figure shows that tux is approximately zero for 0 < y < 0.6 m (main channel) and y > 
1.6 m (flood plain), but that within the lateral shear layer, the values of Fy2 rise 
rapidly and reach a maximum at the beginning of the flood plain (y = 0.9 m). As with 
ta, the maximum values of T", increase and the shear-layer width increases as D, 
decreases. However, the relative values of ty, and 7, differ throughout the depth 
range, so that the secondary flow contribution towards t, is significant a t  large 
relative depths. The second flow contribution was calculated from (12), in the form 

using the data in figure 9 for tyx. The results are shown in figure 10, expressed as 
apparent shear stresses, (pov),, and apparent shear forces per unit length, H ( p U v ) , .  

Figure 10 shows the maximum value of (POT), again occurs at y = 0.9 m, i.e. a t  the 
edge of the flood plain, and that it decreases almost linearly with y for all relative 
depths. This may indicate that there is just one large secondary flow cell on the flood 
plain, except near the far corner region. In  the main channel the decrease in (PUB), 
is again virtually linear for y < 0.6 m. However, in the corner of the main channel (0.6 
< y < 0.75 m) and on the main channel side slope (0.75 < y < 0.9 m) the distribution 
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is more complex, possibly indicating the presence of a number of secondary flow cells. 
The perceived linear variations of (pup), with y outside this corner region are the 
basis of the assumption behind (8). 

An attempt was made to measure the secondary flow structures with the LDA 
system and some results are shown in figure 11.  Also shown in figure 11 ( a )  - (d )  are the 
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632 K .  Shiono and D .  W. Knight 

(a) Main channel, y = 0.7 rn 

(b) Flood plain, y = I .2 m 

FIGURE 12. Vertical distributions of primary and transverse mean velocities, 0 and P, together 
with ov and (pOv)*. 

lateral distributions of boundary shear stress, T,,, obtained from the Preston tube 
readings. It should be noted that the vertical scale in figure 11 has been exaggerated 
2 : 1. The data again correspond to Series 02 (B/b  = 4.2, s = 1.0) for D, = 0.1,0.15,0.2 
and 0.25. The values of V were recalculated from the raw data using a frame rotation 
of -2" in order to make r = 0 at the centre of the main channel (y = 0). The values 
of v were adjusted by + 1" in order to  give = 0 near the bed a t  the centreline 
(y = 0, z = 0.02 m). These adjustments were made in this early series of experiments 
since the LDA probe measuring head was not perfectly aligned. In  subsequent 
experiments very little rotational correction was needed. However, even in those 
cases where great care was exercised, it was not possible to measure the left-hand side 
of (14) directly, since for u = 0.6 m s-l and ( p u p ) ,  = 2 N/m2, i.e. typical values, 
would be 3.3 mm s-l, requiring a rotational accuracy of less than 0.3". It therefore 
follows that the only effective way of determining values of ( P O V ) ~  is by direct 
measurements of the lateral distributions of r,, and ryz and the application of (14). 
To the authors' knowledge figure 10 represents one of the few data sets available for 
(pop), ,  for this type of channel flow. Errors in the Reynolds stress measurements due 
to a 1" error in frame rotation were calculated to be a t  worst 4% ( -  0.08 N/m2) and 
at best less than 1 YO ( -  0.016 N/m2). 

The secondary flow results in figure 11 show that there are two major secondary 
flow cells in the vicinity of the main channel side slope. These cause a strong upflow 
towards the main channel from the re-entrant corner a t  the edge of the flood plain, 



Turbulent open-channel flows with variable depth across the channel 633 

v) 

8 
'1 

W QI 

2 

v) W 

2 8 - v) W 

8 8 8 
'1 



634 

0.6 - 

D, 0.4 - 

0.2 - 

K .  Shiono and D.  W.  Knight 

Knight & Lai data 1 

(4 

12 - 
11 - 

-0.1065 +0.88930;'" v 

(4 

BIb 
A 4.9 
V 4.0 
+ 3.0 
x 2.0 

SERC data 

Blb  
0 6.7 
0 4.2 
0 2.2 

4 1 

0 1 2 3 4 

18 .  

17 - 
16 ~ 

/me 1 5 -  

14 - 
13 - 

B f b  
A 6.67 
V 4.20 
+ 2.20 1 

6 

FIGURE 14. (a) Variation of the ratio of the friction factors of the flood plain and the main 
channel, ffJfmC, with D,. ( b )  Variation of the main channel friction factor, fmc, with D,. 

and a corresponding downflow in the corner of the main channel. These structures 
can be seen for a range of side slopes in Shiono & Knight (1989). The effect of these 
secondary flows on the vertical distributions of horizontal velocity is shown in figure 
12. The depth-mean values of (pUV) are shown to be always positive, a feature 
consistent with the earlier results shown in figure 10. 

3.5. Friction-factor analysis 
In order to be able to apply (9)-(11) effectively, the distribution of local friction 
factor f across the section needs to be known. Experimentally determined values of 
f( = 87,,/(pU3), based on Preston tube and velocity data are shown in figure 13 for 
Series 02 and 03, with Blb = 4.2 and 2.2 respectively. For each series the relative 
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Re = 4U,R/v,  for two-stage channels (Series 0144).  

depth D, was varied from 0.1 to 0.5. The figure indicates that the friction factor f is 
sensibly constant in the main channel and on the flood plain except for remote 
regions of the flood plain for B/b = 2.2 and low D,. The solid lines in figure 13 are the 
averaged values in the main channel, side slope and flood plain sub-areas. In general 
the friction factor on the flood plain, fip, increases relative to the friction factor in the 
main channel, fmc, as D, decreases. This would be expected on the grounds of the 
difference between the Reynolds number in each sub-area. According to the Blasius 
equation for smooth surfaces, f cc Re-f, and therefore the ratio ffp/fmc will depend 
upon D;:. Figure 14 (a)  shows this to be true for the SERC-FCF data where the best- 
fit line gives 

Also shown in figure 14(a) are the data of Knight & Lai (1986), obtained from wind 
tunnel experiments. These data also illustrate the increase in ffp/fmc as D, decreases. 
The variation of fmc with B/b and D, is given in figure 14(b). 

The relationship between the one-dimensional overall friction factor, fo, and the 
overall Reynolds number, Re, is often used in compound channel flow analysis, see 
for example Myers & Brennan (1990). Data from the SERC-FCF are shown in figure 
15, in which the one-dimensional friction factor, fo (=  8gRSo/U& where R is the 
hydraulic radius, V, the section-mean velocity) and the local averaged friction factor, 
fa (=  (l/P)Sfdy, where P is the wetted perimeter) are both plotted against the 
overall Reynolds number ( = 4 4  R/v) .  Figure 15 shows that for overbank flow with 
a given Blb, fo values are below the standard smooth curve of Prandtl and decrease 
with decreasing Reynolds number, whereas fa values are above the standard smooth 
curve and increase with decreasing Reynolds number. This arises because fo is 
strongly influenced by the sudden decrease in hydraulic radius, R, as the flow goes 
out  of thc bank (corresponding t o  a sudden increase in wetted perimeter P for little 
change in area, A ) .  Conversely fa is influenced by the relatively large values of the 
friction factor on the flood plain. It therefore follows that care needs to be exercised 

frp/fmc = -0.1065+0.88930~~. (15) 
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before using standard friction factor versus Reynolds number equations in estimating 
the conveyance capacity of compound channels. 

3.6. Eddy-viscosity analysis 
The depth-mean apparent shear stresses, defined by (13) and shown in figure 8, were 
used to determine the depth-averaged eddy viscosities, Fa( = .ia/(paUd/dy)) and 
dimensionless eddy-viscosity coefficients, ha( = ca/( U,H). These are shown in figures 
16 and 17 for the three cases B / b  = 2.2, 4.2 and 6.67, all with s = 1.0. The local 
velocity gradient, aUd/i3y, was estimated by a third-order polynomial best fit to five 
consecutive data points. Considerable scatter in the processed data will result from 
this procedure where the gradients are small, i.e. for y > 1.5 m in the B/b = 6.67 case. 

Figure 16 shows that the minimum values of eddy viscosity occur on the main 
channel side slope (0.75 < y < 0.9 m). The values tend to increase on the flood plain, 
with the degree of increase being related to  the B/b value. The dimensionless eddy- 
viscosity values, A,, in figure 17 also show an increase with increasing B/b on the 
flood plain, but also indicate a dependence upon the relative depth, D,. The ha values 
in the main channel are more or less constant a t  about 0.5 for all B/b and D, values 
tested. 

Figure 18 shows the corresponding dimensionless eddy viscosity values based on 
the turbulence data in figure 9 for B/b = 4.2. In  the main channel h z 0.07 for all D,, 
which corresponds closely to the standard depth-averaged two-dimensional value for 
open channel flow ( A  = 0.067). As with figure 17, figure 18 also shows that h values 
increase on the flood plain, the degree of increase being related to the value of the 
relative depth, D,. Figure 19 shows that the relationship between the flood plain and 
main channel values may be expressed by 

hrp/&c = (2Dr)p4, (16) 

where A,, = 0.07. This relationship is only valid within the range tested, i.e. 0.1 < 
L), < 0.25. Further turbulence data are required to check the form of (16) for other 
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eddy-viscosity values, &/Amc, with D, and side slope s. 

geometries. The results presented in figures 17 and 18 indicate that the h values in 
the main channel, which include secondary flow effects, are of the order of 10 times 
larger than those based solely on turbulence. 

4. Application of the analytical model 
The analytical model described earlier has been applied to a number of channels 

(Shiono & Knight 1988) with the assumption that the secondary flow term in (7) is 
small, i.e. r = 0. In these cases the local-averaged friction factor fa was used in order 
to calculate the depth-mean velocity, and good agreement between the analytical 
model results and the data was obtained. It is now known that fa is higher than the 
main channel averaged friction factor and lower than the flood plain averaged value. 
Since the friction factor f is combined with the r-factor via /3 through (9) and ( l l ) ,  
this means that secondary flow effects can be included by enhancing the sub-area 
values off. Although this will lead to correct distributions of depth-mean velocity, 
U,, the values of the boundary shear stress T,,, will be in error for those cases where 
secondary flow effects are important. For wide channels and natural rivers these 
effects may be small and an example of how the analytical model can be calibrated 
against field data is given by Knight et al. (1989, 1990). 

In those cases where secondary flows are important then an appropriate value for 
r (or /?) has to be chosen for each sub-area. Figure 10 has already shown that the 
effect of secondary flows on 7, is approximately linear in all regions except in the 
vicinity of the main channel side slope (0.75 < y < 0.9 m). In  this region there is both 
a positive and a negative gradient in ( P O ~ ) ~ .  It is therefore suggested that this region 
be divided into two smaller sub-areas with appropriate /?-coefficients. Where greater 
precision is required the number of sub-areas can of course be increased. 

Figure 20 shows the application of the analytical model to one series of SERC-FCF 
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data (Series 02 with B / b  = 4.2) and how (9) and (10) model the lateral distributions 
of U, and rb over a wide range of depths. For these predictions, r was taken as zero 
in sub-areas 2 and 4 (using the notation in figure 2), with A, = 0.07, A, = A, = 0.16 
and A, = 0.07(2D,)-4, based on (16). The corresponding friction factors were taken as 
follows : fi values from figure 14 ( b ) ,  f3 values from (15), f, = +(f, + f , )  and f4 = f,. For 
sub-areas 1 and 3, f-values were calculated from a linear approximation to figure 
10, giving T, / (pgHS, )  = 0.15 and T , / ( p g ( H - h ) S , )  = -0.25. 

The results shown in figure 20 indicate that the analytical model is capable of 
predicting the lateral distributions of U, and rb in the presence of strong lateral shear. 
There is generally quite good agreement between the analytical and experimental 
values, although the analytical model appears to overestimate both ud and 71, around 
y = 0.5 m at the shallowest depths (D, = 0.2 and 0.15), possibly owing to complex 
structure to the flow in this region. However, given that A and f values were taken 
as constant over four large sub-areas, and that the r values were first-order 
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approximations to figure 10 and completely ignored in sub-areas 2 and 4, the 
predictions are surprisingly good. Further refinement could be undertaken using 
smaller sub-areas in the vicinity of the edge of the flood plain. For practical 
engineering purposes, however, the lateral distributions of U, and r,, are probably as 
accurate as they need to be and may be used for predicting either the stage discharge 
relationship (by lateral integration of U,) or the sediment transport rate (by use of 
local rb values and a transport equation). An attempt at applying the model to 
natural river geometries with 7 or 11 sub-areas has been made with a view to 
predicting the stage discharge curve for overbank flows. Some results are given for 
three gauging stations in the Severn-Trent catchment by Knight et al. (1989, 1990). 
In each case the channel was much more complex than that modelled in the SERC- 
FCF and there were considerable variations in roughness around the wetted 
perimeter. The variation of A and f in each sub-area with stage appeared to be 
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reasonably systematic, enabling the lateral distribution of velocity to be estimated 
for extreme flood events. These were subsequently laterally integrated to produce 
stage discharge curves. 

5. Discussion 
The analytical model described above involves those depth-averaged parameters 

that are likely to  be of the most practical use to  engineers engaged in flood alleviation 
schemes. The lateral distributions of depth-averaged velocity in a river form the 
basis of flow measurement by the current meter method. Lateral integration of the 
individual readings gives not only the total discharge for a given water level or stage, 
but also, and more importantly in multistage channels, the proportion of flow 
occurring in different sub-areas of the channel. Theoretical predictions of U, for given 
stage, geometry and roughness conditions are therefore useful inputs to  both these 
aspects of river gauging. An accurate description of the lateral distribution of 
boundary shear stress in open channel flow is also important in many sediment 
transport theories or calculation methods through the use of the local shear velocity, 
U ,  = (~ , , /p ) f r ,  in sediment transport equations ; see for example Ackers & White (1973) 
and Garde & Ranga Raju (1977). Furthermore, turbulence simulation models have 
tended to  concentrate on the flow field rather than on rb, arising from the sensitivity 
and difficulty of applying wall functions in strongly sheared layers or where 
secondary flows are important ; see Nakayama, Chow & Sharma (1983), Naot & Rodi 
(1982) and Younis & Abdellatif (1989). The analytical predictions shown in figure 20, 
based on an understanding of the lateral distributions of local friction factors in 
figures 13-15, appear to offer the practising engineer a sufficiently accurate 
description of U, and rb for two-stage channels without recourse to three-dimensional 
modelling. The experimental data from the SERC-FCF have provided sufficient 
detail of the various three-dimensional flow structures for the particular problem of 
overbank flow to enable them to be incorporated into this two-dimensional 
analytical model. 

Use of the eddy-viscosity model may be criticized on the grounds of its simplicity. 
However, its use in open channel flow calculations is likely to persist into the 
foreseeable future for two reasons : Firstly the topographically complex geometry, 
the heterogeneous nature of the boundary roughness and the uncertainty in being 
able to prescribe boundary roughness coefficients sufficiently accurately for natural 
river channels and flood plains makes a more refined calculation method not only 
inappropriate but also difficult to calibrate successfully for natural flows. Secondly, 
and arising from the first, is that for estuaries and rivers, in which two-stage or 
multistage. channels commonly exist, engineering calculation methods must of 
necessity average parameters over a large area in a grid representation of the flow 
physics. It therefore follows that in certain types of model, depth-averaged stresses 
Tux or Txu on vertical sections, or area-averaged bottom shear stresses T,, within 
designated areas will still be the basic parameters adjusted in any calibration 
procedure. The experimental results shown in figure 6 indicate clearly some of the 
implications of depth averaging on the Reynolds stresses and on the three- 
dimensional flow structures that occur when bed-generated turbulence, lateral shear 
turbulence and secondary flows interact on the section of a channel where the 
transverse variations in depth are large. The depth-mean turbulent stresses Tyz, 
shown in figure 9 and the depth-mean apparent stresses, 7, shown in figure 8 need to 
be understood in the context of the full three-dimensional picture shown in figure 6. 
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The highly nonlinear nature of the Reynolds stresses on a horizontal plane, 7rz,  which 
are analysed in detail by Shiono & Knight (1989), Knight & Shiono (1990) and 
Knight et al. (1990), point to the complexity of the flow. 

Given that eddy-viscosity models are still appropriate for many types of 
engineering calculation, then one of the more significant experimental results to come 
from the SERC-FCF is the relative contributions of (pov), and T~~ to Fa, illustrated 
in figures 8-1 1. It is clear that for channels with small lateral crossfall, the secondary- 
flow-induced stresses make a significant contribution to the total apparent shear 
stress used in engineering design. For two-stage channels the secondary flows also 
greatly extend the lateral shear layer width on the flood plain. Having also 
demonstrated the considerable experimental difficulties in measuring (par), directly, 
and the need to determine it indirectly via (12) and (13) and detailed measurements 
of 7 b  and rYx, it follows that field studies of lateral dispersion coefficients may require 
some further study. Published reviews by Lau & Krishnappan (1977) and Nokes & 
Wood (1987, 1988) all indicate h-values of around 0.134 for f-values greater than 
0.055, regardless of the aspect ratio of the channel. Although these two reviews 
acknowledge that h is a catch-all type of parameter, it must clearly be made up of 
at  least two components, and the present results may assist in identifying them. 

The experimental data on 6 or h in figures 16 and 17 should be of interest to 
modellers simulating real flows in natural rivers. Although the scale of the SERC- 
FCF is still relatively modest, the flume is an order of magnitude larger than many 
flumes in university hydraulics laboratories. The practical dificulties of measuring rb 
sufficiently accurately in the field under flood flow conditions, together with the time 
taken to measure 7yx values, mean that the SERC-FCF data will remain one of the 
few sources of information concerning the relative importance of the various terms 
in (14). The relative contributions of turbulence and secondary flows to h-values, as 
shown in figures 17 and 18, are therefore significant and need to be appreciated by 
those using numerical models. 

Figure 20 shows that the analytical model is capable of predicting the lateral 
distributions of U, and rb in a two-stage channel to a high degree of accuracy. This 
is not altogether surprising in this instance since the experimental data were used to 
develop two key coefficients in the model. These were the values of r (figure 10) and 
f (figures 14 and 15). The f-values are however corroborated to a certain degree by 
other data (144,  as well as theoretical reasoning. Further experimental evidence is 
therefore urgently required before the analytical model can be used without recourse 
to individual calibration for each type of channel. Notwithstanding this, the model 
can be used for novel geometries and heterogeneous roughness conditions since the 
calibration is relatively straightforward using known distributions of U, data ; see for 
example Knight et aE. (1989). 

6. Conclusions 
(i) An improved analytical model is given for steady, uniform, turbulent flow in a 

compound or two-stage channel. The analytical model gives the lateral distributions 
of depth-mean velocity, U,, and boundary shear stress, rb, for prismatic channels and 
includes the effects of bed-generated turbulence, lateral shear turbulence and 
secondary flows. 

(ii) The depth averaging of parameters, which is required to reduce an essentially 
three-dimensional problem to a two-dimensional one capable of solution, does not 
appear to have significantly reduced the predictive capability of the analytical 
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model. However, there are very large spatial variations in the Reynolds stresses in 
the region of highest lateral shear that  require further analysis. 

(iii) The conventional depth-averaged apparent shear stress, Ta, is shown to be 
composed of two elements, one due to turbulence, T ~ ~ ,  a_n_d the other due to secondary 
flows (pUV),.  The only realistic way of determining (pUV) ,  has been shown to be via 
(14), which requires detailed measurements of boundary shear stresses and Reynolds 
stresses. The relative strength of (pOV),, and its influence on the lateral spreading of 
the shear layer, have been shown to be independent of the relative depth, D, ( =  

(iv) I n  two-stage channels the local friction factors, f( = S ~ ~ / ( p u 2 , ) )  are 
approximately constant, but different, in the main channel and flood plain regions. 
The ratio between the flood plain and main channel friction factors increases as the 
relative depth decreases, in accordance with the variation of local Reynolds number, 

( H -  h ) / H ) .  

i.e. frP/jmc CC D;:, 
(v) Dimensionless eddy-viscosity values, A, have been obtained from both 

apparent shear stresses, Ta, and depth-averaged Reynolds stresses, TYz. In the context 
of overbank flow there is almost an order of magnitude difference between them. In 
the main channel, A, values are around 0.5, whereas A-values based on turbulence 
alone are around 0.07. The A and A, values will increase exponentially on the side- 
slope domain and attain constant but larger values on the flood plain. The ratio 
between the flood plain and main channel dimensionless eddy-viscosity values based 
on turbulence alone is shown to be depth dependent and given by A,,/AmC = 

(iv) The analytical predictions of U, and T,, in two-stage channels are shown to be 
in close agreement with the experimental data from the SERC Flood Channel 
Facility. 
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